Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.22.20137448

ABSTRACT

Supply shortages of N95 respirators during the coronavirus disease 2019 (COVID-19) pandemic have motivated institutions to develop feasible and effective N95 respirator reuse strategies. In particular, heat decontamination is a treatment method that scales well and can be implemented in settings with variable or limited resources. Prior studies using multiple inactivation methods, however, have often focused on a single virus under narrowly defined conditions, making it difficult to develop guiding principles for inactivating emerging or difficult-to-culture viruses. We systematically explored how temperature, humidity, and virus deposition solutions impact the inactivation of viruses deposited and dried on N95 respirator coupons. We exposed four virus surrogates across a range of structures and phylogenies, including two bacteriophages (MS2 and phi6), a mouse coronavirus (murine hepatitis virus, MHV), and a recombinant human influenza A virus subtype H3N2 (IAV), to heat treatment for 30 minutes in multiple deposition solutions across several temperatures and relative humidities (RH). We observed that elevated RH was essential for effective heat inactivation of all four viruses tested. For heat treatments between 72{degrees}C and 82{degrees}C, RH greater than 50% resulted in > 6-log10 inactivation of bacteriophages and RH greater than 25% resulted in > 3.5-log10 inactivation of MHV and IAV. Furthermore, deposition of viruses in host cell culture media greatly enhanced virus inactivation by heat and humidity compared to other deposition solutions such as phosphate buffered saline, phosphate buffered saline with bovine serum albumin, and human saliva. Past and future heat treatment methods or technologies must therefore explicitly account for deposition solutions as a factor that will strongly influence observed virus inactivation rates. Overall, our data set can inform the design and validation of effective heat-based decontamination strategies for N95 respirators and other porous surfaces, especially for emerging or low-titer viruses that may be of immediate public health concern such as SARS-CoV-2. ImportanceShortages of personal protective equipment, including N95 respirators, during the coronavirus disease 2019 (COVID-19) pandemic have highlighted the need to develop effective decontamination strategies for their reuse. This is particularly important in healthcare settings for reducing exposure to respiratory viruses, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19. Although several treatment methods are available, a widely accessible strategy will be necessary to combat shortages on a global scale. We demonstrate that the combination of heat and humidity inactivates viruses similar in structure to SARS-CoV-2, namely MS2, phi6, influenza A virus, and mouse coronavirus, after deposition on N95 respirators, and achieves the United States Food and Drug Administration guidelines to validate N95 respirator decontamination technologies. We further demonstrate that depositing viruses onto surfaces when suspended in culture media can greatly enhance observed inactivation, adding caution to how heat and humidity treatments methods are validated.


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.28.20084038

ABSTRACT

ImportanceFiltering facepiece respirators, including N95 masks, are a critical component of infection prevention in hospitals. Due to unprecedented shortages in N95 respirators, many healthcare systems have explored reprocessing of N95 respirators. Data supporting these approaches are lacking in real hospital settings. In particular, published studies have not yet reported an evaluation of multiple viruses, bacteria, and fungi along with respirator filtration and fit in a single, full-scale study. ObjectiveWe initiated a full-scale study to evaluate different N95 FFR decontamination strategies and their impact on respirator integrity and inactivating multiple microorganisms, with experimental conditions informed by the needs and constraints of the hospital. MethodsWe explored several reprocessing methods using new 3M 1860 N95 respirators, including dry (<10% relative humidity) and moist (62-66% relative humidity) heat (80-82 {degrees}C) in the drying cycle of industrial instrument washers, ethylene oxide (EtO), pulsed xenon UV (UV-PX), hydrogen peroxide gas plasma (HPGP), and vaporous hydrogen peroxide (VHP). Respirator samples were treated and analyzed for biological indicator inactivation using four viruses (MS2, phi6, influenza A virus, murine hepatitis virus), three bacteria (Escherichia coli, Staphylococcus aureus, Geobacillus stearothermophilus), and the fungus Aspergillus niger. The impact of different application media was also evaluated. In parallel, decontaminated respirators were evaluated for filtration integrity and fit. ResultsVHP resulted in >2 log10 inactivation of all tested biological indicators. The combination of UV-PX + moist heat resulted in >2 log10 inactivation of all biological indicators except G. stearothermohphilus. Greater than 95% filtration efficiency was maintained following 2 (UV-PX + <10% relative humidity heat) or 10 (VHP) cycles of treatment, and proper fit was also preserved. UV-PX + dry heat was insufficient to inactivate all biological indicators. Although very effective at virus decontamination, HPGP resulted in decreased filtration efficiency after 3 cycles, and EtO treatment raised potential toxicity concerns. The observed inactivation of viruses with UV-PX, heat, and hydrogen peroxide treatments varied as a function of which culture media (PBS buffer or DMEM) they were deposited in. Conclusions and RelevanceHigh levels of biological indicator inactivation were achieved following treatment with either moist heat or VHP. These same treatments did not significantly impact mask filtration or fit. Hospitals have a variety of scalable options to safely reprocess N95 masks. Beyond value in the current Covid-19 pandemic, the broad group of microorganisms and conditions tested make these results relevant in potential future pandemic scenarios.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL